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Pd0/SnII promoted Barbier-type allylation and crotylation
of sulfonimines
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Abstract—A one-pot Barbier protocol is described for the facile formation of homoallyl sulfonamides from sulfonimines and allyl or
crotyl bromide in the presence of SnCl2, and catalytic Pd2(dba)3ÆCHCl3 at room temperature.
� 2007 Elsevier Ltd. All rights reserved.
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Addition of allyl, propargyl or allenylstannanes to
organic electrophiles such as aldehydes, imines and
epoxides is a well-known tool for carbon–carbon bond
formation in organic chemistry. The far-reaching utility
of these reagents have led to the development of Bar-
bier-like protocols wherein reactive organostannanes
are generated in situ from Sn(0/II/IV).1 It is now well
demonstrated that the generation of allyltin(IV) from
Sn(II) in a Barbier fashion is considerably easier in the
presence of a catalytic d8/d10 transition metal.2 A major
event in the catalytic cycle involves facile allyl transfer
from the transition metal to tin. We and others have suc-
cessfully delineated the strategy for regioselective allyl-
ation, propargylation and allenylation of carbonyls and
epoxides.2–4 In this communication we demonstrate the
further utility of the concept in Barbier-like allylations
of conjugatively stabilized imines in general, and sulfon-
imines in particular, under ambient conditions leading to
the corresponding homoallylamine derivatives.

Homoallylamines are important building blocks for the
preparation of synthetically and biologically important
compounds such as b-amino acids, 1,3-amino alcohols,
1-amino-3,4-epoxides, pyrrolidines and piperidines.5

The most frequently employed methodology for the syn-
thesis of homoallylamines is the allylation of imines with
an allyl-metal reagent.6,7 To our knowledge, there are
only very few reports of facile one-pot, Barbier-like imine
allylations using an allyl halide, the metal reagent being
Mg(0), Zn(0), In(0), Ga(0), Sm(0) or Zn(0)/In(III).8
0040-4039/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2007.07.201

* Corresponding author. Tel.: +91 3222 283338; fax: +91 3222
282252; e-mail: sroy@chem.iitkgp.ernet.in
However, there are no such reports in the realm of tin
chemistry.

Initially we attempted to allylate a set of N-substituted
imines derived from benzaldehyde (Scheme 1). The
reactions were conducted in a one-pot Barbier fashion
utilizing the reagent combination of catalytic Pd2(dba)3Æ
CHCl3, allyl bromide and SnCl2 in dry DCM at room
temperature. The reaction of N-benzylbenzaldimine 1a
led to the isolation of the desired N-benzyl homoallyl-
amine 2a in only 11% yield, along with 68% of the cor-
responding homoallyl alcohol and traces of N,N-diallyl
benzylamine. On the other hand N-phenylbenzaldimine
1b yielded 33% of homoallylamine 2b besides homoallyl
alcohol (40%), and N,N-diallyl aniline (trace). Similar
reaction of N-(4-nitrophenyl)benzaldimine 1c yielded
39% of homoallylamine 2c along with homoallyl alcohol
(30%). Gratifyingly, the reactions of N-benzoylbenzald-
imine 1d, and N-tosylbenzaldimine 1e, were facile and
free from side reactions, and were complete within
14 h. Work-up gave the desired homoallyl benzamide
2d, and homoallyl sulfonamide 2e in 81% and 89%
1c, R' = p-NO2Ph-
1d, R' = PhC(O)-
1e, R' = p-TolSO2-

2c, 39%
2d, 81%
2e, 89%

Scheme 1. Allylation of N-substituted benzaldimines.
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Table 1. One-pot Barbier allylation of sulfonimine 1e: effect of
catalysta

Entry Catalyst Yield of 2e (%)

1 Pd2(dba)3ÆCHCl3 89
2 Pd(dba)2 71
3 PdCl2 Trace
4 Pd(PPh3)4 35
5 PdCl2(MeCN)2 17
6 PdCl2(PPh3)2 21
7 NiCl2(PPh3)2 0
8 PtCl2(PPh3)2 25
9 CuCl(SMe2) 36

a Reagents and conditions: allyl bromide (2 mmol), SnCl2 (1.5 mmol),
catalyst (1 mol %), mol sieve 4 Å, sulfonimine (1 mmol).

Table 2. One-pot Barbier allylation and crotylation of sulfoniminesa

Entry Sulfonimine

1 NTs 1e

2
NTs 1f

Cl

3
NTs

O2N
1g

4
NTs

MeO
1h

5
NTs

Me
1i

6
NTs 1j

Cl

7 NTs 1e

8
NTs

1f
Cl

9
NTs

O2N 1g

10
NTs 1j

Cl

a Reagents and conditions: bromide (2 mmol), SnCl2 (1.5 mmol), Pd2(dba)3ÆC
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yields, respectively. The above results indicate that con-
jugatively stabilized imines are better tuned for the pres-
ent Barbier allylation reaction. Due to their ease of
preparation and hydrolytic stability, henceforth we
chose sulfonimines for further study.

From the screening of various late transition metal cat-
alysts for the allylation of sulfonimine 1e (Table 1),
Pd2(dba)3ÆCHCl3 was adjudged to be the best. Also in
our case, dichloromethane was found to be a better
solvent than THF, benzene, diethyl ether, and DCE.
Attempted reaction with SnCl2 dihydrate gave 56%
of 2e, while reaction in DCM–water (1:1 v/v) led to the
formation of homoallyl alcohol as the major product.
Product % Yield (syn/anti)
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Scheme 2. Proposed pathway for the allylation of sulfonimines.
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Using the optimized parameters, the reaction of allyl
bromide was tested with various sulfonimines (Table
2). The reactions were complete in 13–17 h. Sulfon-
imines 1e–j derived from substituted aromatic aldehydes
gave the corresponding homoallylamines 2e–n as the
exclusive products, and in good to excellent yields (en-
tries 1–10). It should be noted that both electron donat-
ing and withdrawing substituents on the aromatic ring
are amenable to the reaction. The reaction of crotyl bro-
mide with sulfonimines 1e–g and 1j resulted in forma-
tion of the corresponding homoallylamines 2k–n with
100% c-regioselectivity, but in varying syn/anti ratios
(entries 7–10).

While mechanistic explorations are warranted, a sug-
gestion is postulated in Scheme 2. Prior formation of
allyltrihalostannane I from allyl bromide and Pd(0)/
Sn(II) occurs via the well-known pathway involving
oxidative addition of allyl bromide across palladium
and insertion of SnCl2, followed by reductive elimina-
tion.2 Subsequently, the allyltin(IV) species could be
activated by the sulfonimine via N-, and O-coordina-
tion as in six-membered transition state II.9 Concomi-
tant SE2 0 attack followed by hydrolysis would furnish
the homoallylamine.

In summary, we have presented a Pd(0)/SnCl2 mediated
Barbier-type allylation of imines.10 Due to the opera-
tional simplicity and mild conditions, this one-pot
allylation is expected to be attractive, and useful.
Investigations are underway to broaden the scope using
other conjugated imine systems possessing donor atoms.
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